Castores, rinocerontes, denisovanos, Gigantopithecus y Homo antecessor

[English version below]

La paleoproteómica es una disciplina de secuenciación de proteínas procedentes de especímenes antiguos, que está comenzando a explotarse de manera más extendida en los últimos años. Permite trazar relaciones evolutivas comparando entre individuos las proteínas que cumplen la misma función, de forma similar a como hace la genómica comparando regiones genéticas equivalentes. Como las proteínas son más estables que el ADN y no se degradan tan rápidamente, en algunos materiales fosilizados muy antiguos sí se pueden recuperar y estudiar proteínas, pero no ADN. Por ejemplo, los restos humanos más antiguos de los que se ha podido analizar el genoma son los de Sima de los Huesos (Atapuerca), de 430 ka (miles de años), mientras que ya se han estudiado proteínas de otros restos humanos de casi 1 Ma (millón de años), y ya hay intentos con restos de 1,77 Ma. Por tanto, esta técnica viene a ayudar a donde la paleogenómica no llega. Veamos varios casos destacados:

  • El cráneo de castor gigante Castoroides ohioensis. Datado en unos 12.000 años, fue encontrado en 1845 y estaba expuesto en el New York State Museum. El análisis publicado en 2016 de proteínas conservadas en los cornetes nasales, permite conocer la ubicación de esta especie dentro de Castoroidinae y su parentesco con otros representantes de esta subfamilia.
  • También se ha publicado en 2019 el estudio taxonómico de distintas aves a partir de las proteínas de los huesos de especies extinguidas (dodo, Raphus cucullatus, y alca gigante, Pinguinus impennis), así como de otros especímenes más recientes de distintas especies.
  • Un rinoceronte del género Stephanorhinus que vivía en Dmanisi hace 1,77 millones de años, conservaba proteínas en su esmalte dental que han ayudado a situarlo filogenéticamente como un grupo hermano del clado formado por el rinoceronte lanudo (Coelodonta antiquitatis) y el rinoceronte de Merck (Stephanorhinus kirchbergensis).
  • Se ha podido confirmar el vínculo filogenético de Gigantopithecus con Pongo, gracias al estudio de seis proteínas preservadas en el esmalte y la dentina de un molar de Gigantopithecus blacki de 1,9 Ma encontrado en la cueva china de Chuifeng. Los linajes de Gigantopithecus y del orangután (su pariente actual más cercano) se separaron hace unos 10 Ma. Ese molar ha proporcionado los restos moleculares más antiguos que se han podido secuenciar de un fósil.
  • También en 2019 se publicó una mandíbula denisovana de 160.000 años, hallada en en la cueva Karst Baishiya en Xiahe (China) a 3280 metros de altitud. Su pertenencia a dicha población humana se pudo determinar a partir de las proteínas de uno de sus molares.
  • Finalmente, en abril 2020 se ha publicado el estudio proteómico de un diente de Homo antecessor, un primer o segundo molar inferior permanente (espécimen ATD6-92) de unos 800 ka, el proteoma más antiguo de un hominino que se ha podido presentar hasta la fecha, que viene a reforzar la ubicación de este taxón muy relacionado (grupo hermano) con el último ancestro común de sapiens, neandertales y denisovanos.

En este mismo estudio sobre Homo antecessor también se analizó un primer molar superior (D4163) de un hominino de Dmanisi datado en 1,77 Ma, sin resultados concluyentes, pero su antigüedad genera una enorme expectativa sobre la posibilidad de investigar las proteínas conservadas en el esmalte dental, el tejido más duro en el esqueleto de los mamíferos, y obtener grandes resultados para enriquecer nuestro conocimiento sobre las relaciones filogenéticas en la evolución humana.

Abusando del tópico, esto es solo el comienzo… Los resultados satisfactorios que proporciona la paleoproteómica para la revisión de nuestra filogenia, está ya empujando a investigadores a explotar más esta disciplina. Uno de los retos será averiguar por fin qué fue Homo erectus, taxón que abarca una diversidad de especímenes procedentes de grandes regiones de Asia y África (si incluimos a Homo ergaster) y una enorme línea temporal de más un millón y medio de años.

He consultado a José María Bermúdez de Castro su opinión sobre si será aplicable la paleoproteómica sobre algún otro resto de Homo erectus, y si podríamos esperar una relación entre los erectinos asiáticos y Homo antecessor:

Estoy convencido de que ya se están haciendo análisis con otros dientes, y H. antecessor entrará en la comparativa. Los próximos años serán divertidos y habrá más de una sorpresa. Ya se encontraron proteínas en un rinoceronte de Dmanisi, así que también las habrá en los humanos. Es una lástima que el diente analizado [Welker F et al, 2020] era un trozo muy roto y contaminado. Por supuesto, hay una relación entre H. erectus y H. antecessor, porque comparten un antecesor común. Pero estoy convencido de que hay que ir muy atrás en el tiempo para encontrarlo. Quizá haya que llegar hasta la época de Dmanisi. Lo veremos, seguro.

Arriba izda: dientes ATD6-92 de Homo antecessor (Gran Dolina) y D4163 de Homo erectus (Dmanisi). Crédito: Welker F, Ramos-Madrigal J, Gutenbrunner P et al (2020). The dental proteome of Homo antecesor. Nature / Figuras b y c: mandíbula denisovana de Xiahe. Crédito: Chen F. et al (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau.

Sigue leyendo

Por fin, la mandíbula de un denisovano

<English version below>

Hasta el momento, los únicos restos que teníamos de los denisovanos eran 5 fósiles procedentes de la cueva de Denisova (Siberia, Rusia): 3 dientes, 1 falange de dedo y 1 fragmento de parietal [aquí se describen cuáles son]. Hoy se publica en Nature una mandíbula de 160.000 años de antigüedad perteneciente a esa especie y hallada en en la cueva Karst Baishiya en Xiahe (China) a 3280 metros de altitud.

  • Si bien no se han encontrado rastros de ADN preservados en el fósil, sí se ha logrado extraer proteínas de uno de los molares. Su análisis concluye que el individuo perteneció a una población estrechamente vinculada a los denisovanos de Siberia.
  • Esta población humana ocupó la meseta tibetana en el Pleistoceno Medio y se adaptó a su ambiente, escaso en oxígeno, mucho antes de que Homo sapiens llegara a la región. La mandíbula de Xiahe representa por ahora el hominino mas antiguo en la meseta tibetana, muy anterior a la presencia humana en Nwya Devu datada en 30-40 ka.
  • La morfología mandibular en general es primitiva, corta y muy robusta, y se aproxima a la de los especímenes de Homo erectus, pero la forma menos alargada de la arcada dental se parece más a la de los primeros neandertales y Homo sapiens del Pleistoceno Medio. Los dientes son similares a los denisovanos de las montañas Altai, y su morfología encaja con la variabilidad del Pleistoceno Medio.
  • La mandíbula se conserva muy bien. Está datada en 160.000 años mediante series de uranio, una antigüedad comparable a la de Denisova-2, el espécimen más antiguo de Altai.
  • El fósil fue encontrado por un monje local en 1980, quien lo donó al sexto Buda Viviente, Gung-Thang, y este a su vez lo cedió a la Universidad de Lanzhou. Desde 2010, Fahu Chen (Instituto de Investigación de la Meseta Tibetana) y Dongju Zhang (Universidad de Lanzhou) han estado estudiando el lugar de la cueva donde se halló la mandíbula. Y en 2016 empezaron a colaborar con Jean Jacques Hublin y el Departamento de Evolución Humana del Instituto Max Planck. ¡Felicidades al equipo!

Finalmente, quiero recordar en este punto el estudio de Huerta Sánchez E. et al 2014 relacionado con el gen EPAS1, asociado con la concentración de hemoglobina en sangre (ciertas variantes protegen de la hipoxia a los habitantes de las grandes alturas). En aquel estudio se halló que el gen EPAS1 en los tibetanos posee una constitución solo observada en el genoma de los denisovanos y no en otras poblaciones del mundo, a excepción de individuos de poblaciones de chinos Han del sur y un único individuo de la etnia Han de Pekín.

Agradecimiento: a Jean-Jacques Hublin por la información aportada para este artículo. Referencia: Chen F. et al (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau [enlace]

Más información: ¿Quiénes son los denisovanos? [enlace]

Xiahe Denisovan mandible

The Xiahe mandible (a, b, d, e, views after digital removal of the adhering carbonate matrix). Credit: Chen F. et al (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau

Finally, the mandible of a Denisovan!

So far, the only remains we had of the Denisovans were 5 fossils from the Denisova cave (Siberia, Russia): 3 teeth, 1 finger phalanx and 1 parietal fragment [which are described here]. Today, a 160,000-year-old mandible belonging to this species is published. It was found in the Baishiya Karst cave in Xiahe (China) at 3280 meters of altitude. Sigue leyendo

El cráneo de Dali y otros candidatos a denisovanos

<English version below>

Los denisovanos son un grupo humano del Pleistoceno Medio de los que solo conocemos unos pocos restos muy humildes pero que han conservado material genético, suficiente para permitir la identificación de una nueva especie humana (pendiente de definición), diferente a las otras dos especies (como mínimo) con las que convivió y se hibridó: Homo neanderthalensis y Homo sapiens. Los primeros restos identificados proceden de la cueva Denisova: una falange del dedo de un individuo juvenil femenino (Denisova 3), dos molares (Denisova 4 y Denisova 8, adultos masculinos), y un molar deciduo de una niña (Denisova 2).

Los denisovanos vivieron hace entre hace 50 y 170 Ka y comparten con los neandertales un antepasado común, cuyo linaje a su vez tiene un antepasado común con Homo sapiens. La cercanía entre estos tres linajes permite hipotetizar sobre la posible relación con los denisovanos de algunos fósiles de Asia Oriental:

1) Los dos cráneos de Xuchang, de antigüedad 105-125 Ka, encontrados en Lingjing, al este de China y a unos 4000 km de la cueva de Denisova. En principio se les consideró Homo erectus.

2) Los dientes de Xujiayao, encontrados en los años 1970, grandes y complejos, que se consideraban pertenecientes a una población de transición entre Homo erectus y Homo sapiens, o bien de Homo sapiens atendiendo a las herramientas líticas (posteriores al achelense) y la fauna del yacimiento. Combinan rasgos primitivos con otros más modernos y similares a los neandertales. En 2017 se dataron en 260-370 ka, rango que complica aún más su asignación a una especie.

3) Los cráneos de Dali (209 ka), Maba (132 ka) y Jinniushan (280 ka). En particular, nos detenemos en el cráneo de Dali, muy completo, aunque lamentablemente carece de la dentición superior y de la mandíbula inferior. Con dudas sobre su antigüedad: un diente de bóvido aparentemente asociado al cráneo fue datado en 209 ka. Por tener varias características compartidas con algunos especímenes contemporáneos europeos y africanos, se llegó a proponer como un ejemplo de la presencia de Homo heidelbergensis en Asia. De nuevo, se trata de un mosaico con rasgos primitivos en la bóveda craneal…

  • Grueso toro circular sobre cada órbita.
  • Cráneo muy bajo y alargado, aunque el ancho máximo está en la región temporal superior (en Homo erectus está en la inferior).
  • Grosor de los huesos, sobre todo los temporales, parietales y occipital.
  • Ángulo occipital/nucal muy abrupto.
  • Desarrollo sagital a lo largo del cráneo.
  • Capacidad craneal de 1120 cc.

… y rasgos modernos en la cara:

  • Plana y de tamaño pequeño.
  • Cigomáticos gráciles, con inserción en el alveolar similar a Homo sapiens.
  • Órbitas cuadradas, con bordes suaves y redondeados.
  • Su región nasal ancha recuerda a la neandertal.

4) El cráneo de Harbin, hasta la fecha sin publicar salvo algunas fotografías en prensa china. Increíblemente, permaneció oculto en manos privadas desde su hallazgo en 1933 hasta septiembre de 2018. Parece tener características muy similares a Dali en la cara, toro supraorbital, frontal y órbitas. En las líneas que acompañan a su presentación en prensa, se le define como Homo heidelbergensis y se le asigna una antigüedad de entre 200-400 ka.

A falta de una definición formal de la especie Homo heidelbergensis, en todo caso es difícil que una misma realidad biológica represente a los materiales de Mauer, Petralona, Bodo, Kabwe… y también Dali, Harbin y otros especímenes chinos. Lo que sí parece claro es que durante el Pleistoceno Medio se sucedieron distintas oleadas en Asia (y en Europa) que mezclaron genéticamente a los grupos humanos existentes con otros nuevos. Poder comparar el material genético de los denisovanos con el de otros fósiles asiáticos contemporáneos (cosa que terminará ocurriendo), ayudará a comprender las complejas relaciones evolutivas entre los grupos humanos de Eurasia y también con sus coetáneos africanos.

Más información: ¿Quiénes son los cuatro denisovanos?

Dali, Harbin, Bodo, Kabwe

Middle Pleistocene skulls: Dali, Harbin, Bodo, Kabwe. Sources: Dali (peterbrown-palaeoanthropology.net/dali.html), Harbin (China Institute of Geological Environmental Monitoring), Bodo and Kabwe (Roberto Sáez)

The Dali skull and other candidates to be Denisovan

Sigue leyendo

Denisovans, Neandertals and Human emotions

In 2015 the genome of Oase-1 was published, a Homo sapiens individual from Romania who lived 38-42 thousand years ago (ka). The study of the genetic material preserved in the mandible showed that this individual had a Neandertal ancestor as recently as four to six generations back. That was shocking…

Now we also have the genome from a long bone of a female human (Denisova 11, aka ‘Denny’) found at the Denisova Cave in Siberia, who was at least 13 years old at death according to its cortical thickness. Direct dating of the fossil showed it to be beyond the radiocarbon limit, hence it is older than 50,000 years, probably around 90-100 ka. Oase-1 now pales in comparison to the findings from Denny…

  • Denny’s DNA fragments carried alleles matching in similar proportions the Denisovan genome and the Neandertal genome. She was the daughter of a Neandertal mother and a Denisovan father.
  • The Denisovan father had more than one Neandertal ancestor in his genealogy, as recently as 300 to 600 generations back.
  • The Neandertals that contributed to the ancestry of the father were from a different population than her mother. The Neandertal mother came from a population more closely related to the Neandertals who live later in Western Europe (compared to the Vindija material from Croatia) than to the earlier Neandertals from the Denisova Cave.
  • Eastern Neandertals migrated into Western Europe after 90 ka, and/or Western Neandertals migrated to the Altai region before 90 ka and partially replaced the local population.
Denisova 11 & Oase 1

(L) Denisova 11, credit Nature vol 560 23 Aug 18. (R) Oase 1, credit Roberto Sáez

Sigue leyendo